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Summary. We describe a family of quadrilateral meshes based on diamonds,
rhombi with 60◦ and 120◦ angles, and kites with 60◦, 90◦, and 120◦ angles, that
can be adapted to a local size function by local subdivision operations. The vertices
of our meshes form the centers of the circles in a pair of dual circle packings in which
each tangency between two circles is crossed orthogonally by a tangency between
two dual circles.

1 Introduction

A famous and deep theorem of Koebe, Andreev, and Thurston [1, 2, 23, 40]
asserts that the vertices of every planar graph may be represented by a circle
packing, a system of circles with disjoint interiors, such that two vertices are
adjacent in the graph if and only if the corresponding two circles are tangent.
This representation is not unique without additional constraints (for instance,
a 4-cycle has infinitely many distinct representations as a set of four tangent
circles) but it can be made unique, up to Möbius transformations, in one of
two different ways:

• Let G be constrained to be a maximal planar graph; that is, every face
of G, including the outer face, must be a triangle. Then its representation
as a circle packing exists and is unique up to Möbius transformations
(Thurston, Corollary 13.6.2). We call this a maximal circle packing. An
example is shown in Figure 1, left.

• Alternatively, let G be a 3-vertex-connected planar graph. It has a unique
planar embedding; let G′ be the dual graph of this embedding. Then it is
possible to represent both G and G′ by simultaneous circle packings with
the property that, for every edge e of G and its corresponding dual edge
e′, the two circles representing the endpoints of e have the same point of
tangency as the two circles representing the endpoints of e′ and, moreover,
the circles for e cross the circles for e′ at right angles at this point. Again,
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Fig. 1. A maximal circle packing (left) and an orthogonal circle packing (right).

this representation is unique up to Möbius transformations [10], and we
call it an orthogonal circle packing. An example is shown in Figure 1, right.

Circle packings of these types have been applied in the field of graph draw-
ing, to find drawings of planar graphs with right angle crossings [10], high
angular resolution [13, 29], and small numbers of distinct slopes [21]. They
have also been used for mesh partitioning [17,32,33], for visualization of brain
structures [20], for analyzing the structure of soap bubbles [16], for solving
differential equations [19], for constructing Riemann surfaces from combinato-
rial data [9], and for finding approximations to conformal mappings between
different simply connected domains, which can be used as an important step
in structured mesh generation [34,37].

The two constrained forms of circle packing guaranteed to exist by the
circle packing theorem would seem to be also a natural fit for unstructured
mesh generation: in a maximal circle packing, the graph of adjacencies be-
tween tangent circles (with its vertices placed at the triangle centers) forms
an unstructured triangle mesh, and in an orthogonal circle packing, the graph
of adjacencies between orthogonal circles forms an unstructured quadrilateral
mesh. Additionally, if the degree of a graph is bounded, then the circle pack-
ings generated from it are naturally graded in size: adjacent circles have radii
whose ratio is bounded, and the triangular or quadrilateral elements derived
from the packing have bounded aspect ratio. However, despite their obvious
appeal, these types of circle packing have not been used in mesh generation,
because the geometry of a circle packing is difficult to control: circle packings
are generated from combinatorial data (a graph) rather than from geometric
data (the shape of a domain to be meshed) and in general, a small localized
change to the graph from which the circle packing is generated can lead to
large and non-localized changes to the packing.

Circle packings are still used in many unstructured mesh generation al-
gorithms, but they are not the types of packings described by the Koebe–
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Andreev–Thurston theorem. Rather, methods for unstructured mesh genera-
tion based on circle packings have typically relied on methods that generate
packings with less structure, by placing circles one at a time using a greedy
algorithm [4, 7, 15, 24, 25, 27, 41], physical simulation [36], or decimation of
quadtree-based oversampling schemes [30,31]. Circle packing mesh generation
algorithms have been used to find nonobtuse triangular meshes for polygonal
domains [7, 15] as well as bounded-aspect-ratio triangular meshes [25] and
quadrilateral meshes in which all elements belong to certain special types of
quadrilateral [4]. The circle packings generated by these methods can be made
to have radii controlled by a local size function [25, 41], and mesh generation
techniques based on these methods can be applied in higher dimensions as
well [24, 28, 30, 31]. However, these circle packings are neither maximal nor
orthogonal; rather, as well as having the three-sided gaps between circles that
a maximal circle packing would have, they also include irregular gaps with
four or more sides. Instead of generating a mesh directly from the intersection
pattern of the given circles, these methods need additional vertices at points
such as the circumcenters of the gaps, and they typically also need additional
case analysis to handle the different possible shapes of their gaps.

In this paper, we show for the first time that it is possible to construct or-
thogonal circle packings, one of the two types of circle packing guaranteed to
exist by the Koebe–Andreev–Thurston theorem, with geometric rather than
graph-theoretic control of the position and size of the circles. Our circle pack-
ings are based on a quadrilateral mesh in which every quadrilateral is either
a diamond, a rhombus with 60◦ and 120◦ angles, or a kite with 60◦, 90◦,
and 120◦ angles; the circles in the packing are centered at the vertices of this
mesh and have their points of tangency at the points within each quadrilateral
where its two diagonals cross.

In some ways, our construction resembles more standard meshing tech-
niques based on quadtrees (squares recursively subdivided into four smaller
squares) [5,14,18,42], or the recursive subdivision of triangles into four smaller
triangles used by the Sloan digital sky survey [39]. Like quadtrees and recur-
sive triangle meshes, any two quadrilateral meshes formed by our construction
can be transformed into each other by a sequence of simple local operations,
and these local operations give the set of meshes formed in this way the struc-
ture of a distributive lattice, in which any two meshes have a coarsest common
refinement and a finest common coarsening. Again, like quadtrees, these sub-
division operations allow our mesh to be adapted to a size function specifying
the element size at each point of a domain, and meshes adapted to a size
function in this way have a number of elements that is within a constant
factor of optimal for any bounded-aspect-ratio mesh for that size function.
Like quadtrees, our meshes can as well use the same subdivision operations to
adapt dynamically to varying size functions at different time steps of a finite
element simulation. However, the squares of a balanced quadtree may share
a boundary edge with up to eight smaller squares, and therefore require ad-
ditional subdivision to produce a triangle or quadrilateral mesh; in contrast,
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Fig. 2. Left: The rhombille tiling. Right: The short diagonals of the rhombille tiling
form a hexagonal tiling.

our method provides a mesh directly without the need for additional sub-
division. The hexagon-based meshing algorithms of Sußner, Greiner, Liang,
and Zhang [26, 38] also resemble the method here, but are based on scaling
by factors of two at each level of subdivision whereas we use factors of

√
3.

Other subdivision schemes related to the methods described here include hon-
eycomb refinement [12,43] and

√
3 refinement [22,43]; however, these schemes

are typically applied to every element of a structured or semistructured mesh
rather than (as here) to selected elements of an unstructured mesh.

We caution that our results should be viewed as primarily mathematical
rather than being ready for immediate use in mesh generation practice. The
meshes described here do not conform to domain boundaries with arbitrary
slopes, and we have not implemented our algorithms.

2 The rhombille tiling and its local subdivision

Our construction begins with the rhombille tiling of Figure 2 (left), a tessel-
lation of the plane by rhombi with 60◦ and 120◦ angles that resembles the
axonometric projection of a pile of cubes and that can be formed by subdi-
viding a regular tiling by hexagons into three rhombi per hexagon [11]. Each
vertex of the rhombille tiling has degree (valency) either three or six: either
six rhombi meet at their acute corners, or three rhombi meet at their obtuse
corners. The short diagonals of the rhombi form another hexagonal tiling in
which each hexagon surrounds a degree-six vertex of the rhombille tiling.

Suppose that we wish to refine a rhombille tiling within a region R of
the plane, forming a mesh with smaller elements, while leaving the tiling un-
changed outside R. To do so, we may approximate R by a set of the hexagons
formed by short diagonals, and perform the local replacement operation il-
lustrated in Figure 3 within each hexagon. This operation replaces the six
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Fig. 3. Replacement of six rhombille-tiling edges within a hexagon of short diagonals
(left) by six rhombi with side length 1/

√
3 times the lengths of the sides in the

original tiling.

Fig. 4. The result of performing multiple local replacements in a rhombille tiling.
Within the blue replaced region, we have another rhombille tiling, rotated from the
original and with smaller tiles.

edges that meet in the center of the hexagon with a network of 18 edges,
shorter by a factor of 1/

√
3 from the original edges. These new edges form the

boundaries of six rhombi similar to the ones in the original rhombille tiling
but rotated from them by 30◦ angles. Each subdivided quadrilateral crossing
the boundary of the hexagon remains a quadrilateral after the replacement, so
the result of the replacement is a valid quadrilateral mesh with six additional
quadrilaterals for every replaced hexagon.

Figure 4 shows the mesh resulting from the performance of multiple local
replacements in a rhombille tiling. When one of the replaced hexagons abuts
a hexagon that has not been replaced, the quadrilaterals formed across the
shared boundary of the two hexagons are kite-shaped, with vertex angles 60◦,
90◦, and 120◦. However, when two or more replaced hexagons abut each other,
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Fig. 5. Changes to the system of circular arcs within each quadrilateral caused by
a single local replacement step.

the quadrilaterals that lie across their shared boundary are rhombi congruent
to the ones contained within each replaced hexagon. Within any region formed
by multiple replaced hexagons, the smaller rhombi formed by this replacement
process meet up with each other in the pattern of another rhombille tiling,
rotated from the original tiling by a 30◦ angle and with tiles that are smaller
by a 1/

√
3 factor.

Once this replacement has been performed, the same replacement process
can be performed within the finer rhombille tiling formed within the replaced
region. The degree-six vertices that can be replaced within this finer tiling
are either the same degree-six vertices that were replaced previously, or the
points where three replaced hexagons meet.

We call the meshes generated by any number of steps of this replacement
process “diamond-kite meshes”.

3 Orthogonal circle packing

We now show that the diamond-kite meshes correspond to orthogonal circle
packings. In each quadrilateral of a diamond-kite mesh, place arcs of four cir-
cles, centered at the quadrilateral’s four vertices and meeting at the center
of the quadrilateral. Then, the circular arcs for the quadrilaterals meeting at
a vertex will necessarily link up to form a single circle. In the unsubdivided
rhombille tiling, this is true because the quadrilaterals sharing a vertex are all
rotated images of each other, and it remains true in each of the local replace-
ment steps by which the subdivided tiling is formed. As shown in Figure 5, the
circular arcs surrounding each vertex of the replaced hexagon (shown as green
in the figure) retain their previous radius, and the circular arcs surrounding
the center vertex and each newly added vertex (shown as violet) meet up to
form a circle that lies entirely within the replacement region.

The circles formed in this way meet in tangent pairs at the points within
each quadrilateral where the diagonals cross, and (because the rhombs and
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Fig. 6. A diamond-kite mesh with quadrilaterals of many different scales and its
circle packing.

kites of the mesh are both orthodiagonal) the two pairs of tangent circles
meeting at each crossing point are orthogonal to each other. Thus, the result
is an orthogonal circle packing. Figure 6 shows a larger example.

4 Lattice of refinements

Given an initial rhombille tiling T , we may uniquely specify each of the local
replacement steps used to form a diamond-kite mesh by a pair of parameters
(p, s), where p is the center point of the replaced hexagon and s is its side
length. We may analyze cases to determine the conditions under which a
replacement with parameters (p, s) is possible:

• If s is the length of the sides of the original tiles of T , then replacement
(p, s) may always be performed in every diamond-kite mesh formed from
T in which it has not already been performed.

• If s is smaller than the side length in T , and (p, s
√

3) is the pair of pa-
rameters for another replacement step, then replacement (p, s) may be
performed if and only if replacement (p, s

√
3) has already been performed.

The reason for this is because the replacement (p, s
√

3) is the only possible
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way to incorporate into the tiling the six edges that will be replaced by
(p, s).

• In the remaining case, there are three points p0, p1, and p2 equally spaced
around p at distance s

√
3 from it, such that each point pi gives the pa-

rameterization of a replacement step (pi, s
√

3) and such that replacement
(p, s) may be performed if and only if all three of (pi, s

√
3) have already

been performed. Each of the three replacements (pi, s
√

3) is the only pos-
sible way of incorporating into the tiling two of the six edges that will be
replaced by (p, s).

We may encode this case analysis by an infinite directed acyclic graph GT

in which we have a vertex for each pair (p, s) that defines a valid replacement
step, and in which we have an edge from (p, s) to (p, s

√
3) (when (p, s

√
3)

defines a valid replacement step) or from (p, s) to each of the three vertices
(pi, s

√
3) (in the cases where these three vertices are defined). In GT , the

replacement steps corresponding to all incoming neighbors of a vertex must
be performed before the replacement step corresponding to the vertex itself
may be performed.

Alternatively and equivalently, we may use an infinite partially ordered
set PT that has an element for each pair (p, s), and in which two elements
x and y are ordered x ≤ y whenever there is a directed path from x to y in
GT . This formulation is more convenient for describing the set {x | x < y} of
all replacement steps that must be performed prior to performing operation
y, either because they directly precede y (as in the case analysis above) or
because they precede one of the predecessors of y.

If T ′ is a diamond-kite mesh formed by refining the initial mesh T , then
(by the analysis above) the set of replacement steps that were used to generate
T ′ from T must be a finite lower set in PT , that is, a set L of elements with
the property that, for every element y ∈ L and for every element x with x ≤ y,
x is also in L. Conversely, every finite lower set L uniquely defines a diamond-
kite mesh TL as a refinement of T , because the replacement operations in
L may be performed in any order that is consistent with the case analysis
above; different orderings of the same operations will always lead to the same
results. The orderings in which a given lower set L of replacement steps may
be performed are exactly the linear extensions of the partial order induced by
the elements of L in PT , and a valid ordering for a given lower set L may be
calculated by applying a topological sorting algorithm to the directed acyclic
graph induced as a subgraph of GT by the elements of L.

Let T1 and T2 be any two diamond-kite meshes formed by refining T , and
described by the respective finite lower sets L1 and L2 in PT . Then the sets
L1∩L2 and L1∪L2 are also finite lower sets, describing respectively the finest
mesh T1 ∧ T2 from which both T1 and T2 can be formed by refinement, and
the coarsest mesh T1 ∨ T2 that can be formed by refining both T1 and T2. In
this way, as with the lower sets of every partially ordered set [8], the family
of diamond-kite meshes can be given the structure of a distributive lattice.
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Fig. 7. Cases for refine(p). From left to right: (a) p has degree six, and is ready for
immediate replacement; (b) p has degree three, and does not meet the preconditions
of refine; (c) p has degree five, and a replacement at the 60◦ kite vertex must be
performed prior to a replacement at p; and (d) p has degree four, and two 60◦ kite
vertices must be replaced prior to a replacement at p.

We remark that the same ideas of constructing an infinite graph describ-
ing the prerequisite relation between potential replacement steps, deriving an
infinite partial order from the graph, and describing each possible mesh as a
lower set of this partial order, can be applied equally well to describe the set
of possible balanced quadtrees derived from an initial square. Thus, the set of
balanced quadtrees can also be given the structure of a distributive lattice.

5 Local replacement at mesh vertices

When we adapt a mesh to a local size function, it will be convenient to specify
the local replacement steps of the adaption process by vertices of a mesh
rather than by the more abstract elements of an infinite partially ordered set
described in the previous section.

We will define a recursive subdivision algorithm refine(p) that performs
a single local replacement step at a vertex p of a diamond-kite mesh, after
performing all prerequisite replacements, as follows. We require, as a precon-
dition for this algorithm, that p be a 60◦ vertex of at least one mesh element.
Based on this requirement, the case analysis below describes which other re-
placement steps are necessary before the one at p can be performed:

• If p has degree six, then the most recent replacement step that affected
the edges incident to p must either have replaced a hexagon with p at its
center, or have been the third of three replacements of hexagons meeting
at p. In this case, p is already surrounded by diamonds and/or kites having
60◦ angles at p, as shown in Figure 7(a). It is possible to perform a local
replacement step at p without performing any other replacements.

• If o has degree three, then it must be the case that the most recent re-
placement step at p replaced a hexagon for which p was interior but not
central. Then p is a 120◦ vertex of three elements, either two diamonds
and one larger kite (as in Figure 7(b)) or three diamonds. In this case,
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it is not possible for the precondition of the refine algorithm to be met,
because there is no 60◦ angle at p.

• If p has degree five, then it must be the case that the most recent replace-
ment to affect the neighborhood of p was the replacement of a hexagon
having p as a vertex, and additionally this must have been the second
replacement of the three hexagons of that size meeting at p. Then the
neighborhood of p consists of three elements with 60◦ angles (diamonds
or kites within the two replaced hexagons) and two elements with 90◦ an-
gles (necessarily kites in the third hexagon); see Figure 7(c). Let q be the
shared 60◦ vertex of these two kites. We recursively call refine(q), after
which we may perform a replacement step at p.

• If p has degree four, then p was a vertex of the hexagon for the most recent
replacement at p, and this was the first replacement of the three hexagons
of that size meeting at p. In this case p has a neighorhood with one 60◦

angle (a diamond or kite in the replaced hexagon), two 90◦ angles (kites
in the two unreplaced hexagons), and one 120◦ angle (a rhomb or kite
overlapping the two unreplaced hexagons), as is depicted in Figure 7(d).
We recursively call refine for each of the two 60◦ vertices of the kites with
incident 90◦ angles, after which we may perform a replacement step at p.

Thus, refine(p) need only list all kites that have 90◦ angles at p, recursively
call itself on the 60◦ angles of these kites, and then perform a replacement step
at p. The recursion necessarily terminates, because each recursive call leads
to a replacement step on a larger hexagon. Each recursive call adds elements
to the mesh for the replacement step it performs, so the total time for this
recursive procedure is linear in the total change to the number of elements in
the mesh. The case analysis above shows that this recursion performs exactly
the replacement steps that are predecessors of (p, s) in the partial order PS

and that had not already been performed at the start of the recursion.

6 Adaption to a local size function

We define a local size function to be a function σ that maps each point p
of the plane (or of a subset of the plane to be meshed) to a positive real
number σ(p), specifying the largest allowable side length of a mesh element
containing p.1 We assume that access to σ is via a subroutine oversized(Q)
that takes as argument a quadrilateral Q and returns a Boolean value, true if
Q contains a point p for which σ(p) is less than the side length of Q and false
otherwise. Our task is to find a mesh that is as coarse as possible subject to
the constraint that oversized returns false for all mesh elements.

1It would be equivalent to within constant factors to specify the maximum allow-
able area, perimeter, diameter, or circumradius of the element, but side length turns
out to be more convenient for our purposes, because it leads to fewer ambiguities
about which replacement steps are necessary.



Diamond-Kite Quad Mesh and Circle Packing 11

To do so, from an initial mesh, we make a queue of unprocessed quadri-
laterals in the mesh. We repeatedly find and remove a quadrilateral Q from
this queue, process it, and add to the queue all new quadrilaterals formed
during processing, until the queue becomes empty. To process a quadrilateral
Q, we first try calling oversized(Q); if it returns false, processing is complete.
Otherwise, if Q is a kite, we let p be its 60◦ vertex and call refine(p). If Q is
a diamond, let p1 and p2 be its 60◦ vertices and let Q1 and Q2 be the kites
within Q that have the same maximum side length as Q and that have p1
and p2 (respectively) as their 60◦ vertices. For each i in the set {1, 2} we call
oversized(Qi) and, if it returns true, we call refine(pi). Note that it is not pos-
sible for both oversized(Q1) and oversized(Q2) to be false, because that would
be inconsistent with the assumed true value of oversized(Q). Thus, regardless
of the shape of Q, if oversized(Q) is true then processing Q will cause it to
become subdivided.

Whenever this adaption procedure calls refine(p), leading to a replace-
ment step at vertex p, the same replacement step must be performed in all
diamond-kite meshes that obey the size function σ, because otherwise the
current quadrilateral Q or a kite within it would remain and have too large
a side length. Therefore, the result of the adaption procedure is the coarsest
diamond-kite mesh consistent with the size function. Each step either removes
a quadrilateral from the queue without adding any others, or it takes time
linear in the number of elements added, so the total time for this adaption
procedure is linear in the size of the final mesh it produces.

7 Size and length optimality

Following Ruppert [35], we may use local feature size to prove that the method
for size adaption discussed in the previous section produces meshes that (com-
pared to any other mesh with quadrilaterals or triangles of bounded aspect
ratio obeying the constraints of the local size function) are within a constant
factor of optimal with respect both to their number of elements and to their
total edge length, matching known results for quadtree meshes [5,14] and for
meshes formed by Delaunay refinement [35].

We assume that the size function σ(p) is defined in such a way as to lead
to a finite mesh, and we define the local feature size to be a function σ̂(p) that
maps a point p to the number

σ̂(p) = inf
{

distance(p, q) + σ(q)
}
.

The point q in the minimization ranges over the rest of the plane, but its
minimum will necessarily occur within a disk of radius σ(p) centered at p,
because all other points lead to larger values than the value σ(p) achieved at
q = p. The following two observations are central to our analysis:

• In all meshes with bounded-aspect-ratio elements, the size of the element
containing a given point p is Ω(σ̂(p)). To see this, let q be a point achieving
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(or approximately achieving) the minimum value in the definition of σ̂(p).
The element containing q must have size at most σ̂(p), and the sequence
of elements crossed by the line segment from q to p cannot increase in size
from that value by more than a constant factor before they reach p.

• In the diamond-kite mesh defined from the size function σ, the size of
the element containing p is O(σ̂(p)). This follows from the fact that, if q
is any point in the plane, the size of the smallest element of the partial
order PT that is forced by the value of σ(q) to be included in the mesh
and that corresponds to a local replacement for a hexagon containing p is
O(distance(p, q) + σ(q).

Given a bounded-aspect-ratio mesh M , let α(p) denote the area of the
element containing p. Then, for all elements E of M , we have the identity∫

E

1

α(p)
dp = 1.

Therefore, the number of elements in the mesh can be counted by∫
M

1

α(p)
dp.

However, 1/α(p) is lower-bounded by Ω((σ̂(p))−2) for all bounded-aspect-
ratio meshes, and upper-bounded by O((σ̂(p))−2) for diamond-kite meshes;
therefore, the number of elements in the diamond-kite mesh determined by
size function σ is within a constant factor of optimal.

Similarly, given a bounded-aspect-ratio mesh M , let π(p) denote the
perimeter of the element containing p. Then, for all elements E of M , we
have the identity ∫

E

π(p)

α(p)
dp = perimeter(p).

Therefore, the total perimeter of all the elements in the mesh is∫
M

π(p)

α(p)
dp.

However, π(p)/α(p) is lower-bounded by Ω(1/σ̂(p)) for all bounded-aspect-
ratio meshes, and upper-bounded by O(1/σ̂(p)) for diamond-kite meshes;
therefore, the total perimeter of the elements in the diamond-kite mesh de-
termined by size function σ is within a constant factor of optimal.

8 Additional properties

Every vertex of a diamond-kite mesh has degree at most six. Every two or-
thogonal circles have radii differing by a factor of exactly

√
3, and every two

tangent circles have radii differing by a factor of at most three.
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Fig. 8. Left: A 3-colored diamond-kite mesh. Right: A quadrilateral mesh that
requires four colors in any face coloring.

Graph colorings of meshes may be used to schedule batches of parallel
updates to the values stored at mesh elements, in order to ensure that each
two values that are updated in the same batch are independent from each
other [3,6]. As with all planar graphs in which every face has an even number
of sides, the vertices of a diamond-kite mesh may be colored with two colors,
but in this context it is more relevant to color the faces of the mesh so that no
two faces that share an edge have the same color. This may be done with three
colors by the following simple strategy: define an equivalence relation on the
quadrilaterals of the mesh, according to which two quadrilaterals are equiva-
lent when their diagonals are parallel, and assign one color to each equivalence
class. There are only three equivalence classes: quadrilaterals in two different
equivalence classes will have their diagonals rotated by 30◦ from each other,
and after three such rotations we return to the starting equivalence class. No
two adjacent quadrilaterals in a diamond-kite mesh may have parallel diago-
nals, so adjacent quadrilaterals are always assigned distinct colors. Therefore,
the result is a proper 3-coloring. In contrast, quadrilateral meshes other than
the diamond-kite meshes may sometimes require four colors (Figure 8).

9 Conclusions

We have defined the family of diamond-kite meshes based on a simple lo-
cal replacement step starting with the rhombille tiling. In these meshes, the
most acute angle is 60◦, the most obtuse angle is 120◦, and all elements have
bounded aspect ratio. The element size can be controlled by a local size func-
tion, and the number of elements and total edge length of the elements is
within a constant factor of optimal for the given size function. Replacement
operations may be performed adaptively to handle time-dependent size func-
tions. Unlike adaptive quadtree meshes, this system provides a quadrilateral
mesh directly without any need for additional subdivision.
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The most novel feature of our new meshes is that their vertices form the
centers of an orthogonal circle packing of the type guaranteed to exist by the
Koebe–Andreev–Thurston circle packing theorem, showing for the first time
that it is possible to incorporate this type of circle packing into a meshing
algorithm.

Much remains to be studied in this area. On the mathematical side, we still
do not know whether it is possible to define an analogous local replacement
scheme that would allow the generation of maximal circle packings (in which
every gap between three circles has exactly three sides) with similar properties
to those of the diamond-kite mesh, and in particular with the ability to control
the size of the circles in one part of the packing without changing the geometry
of the circles in distant parts of the packing. On the more practical side, it
would be of interest to develop the diamond-kite method into a practical mesh
generation system and to compare empirically the quality of meshes generated
in this way with those from other comparable systems such as quadtrees and
Delaunay refinement. We leave such developments to future research.
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